Sains Malaysiana 53(7)(2024): 1693-1702
http://doi.org/10.17576/jsm-2024-5307-16
Enhancing Precision in Population Variance Vector
Estimation: A Two-Phase Sampling Approach with Multi-Auxiliary Information
(Meningkatkan Ketepatan dalam Anggaran Vektor Varians Populasi: Pendekatan Persampelan Dua Fasa dengan Maklumat Berbilang Bantu)
AMBER ASGHAR1, AAMIR SANAULLAH2,*, MUHAMMAD HANIF3 & LAILA A. AL-ESSA4
1Department
of Statistics, Faculty of Science and Technology, Virtual University of
Pakistan, Lahore, Pakistan
2Department of Statistics, COMSATS University
Islamabad Lahore Campus, Pakistan
3Department of Statistics, National College of
Business Administration & Economics, Lahore, Pakistan
4Department of Mathematical Sciences, College of
Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
Received: 11 January 2024/Accepted:
11 June 2024
Abstract
To enhance precision in estimating unknown population
parameters, an auxiliary variable is often used. However, in scenarios where
required information on an auxiliary variable is partially or fully
unavailable, two-phase sampling is commonly employed. The challenge of
estimating the variance vector using multi-auxiliary variables is a less
explored area in current literature. This paper addresses the estimation of
vector of unknown population variances for multiple study variables by using an
estimated vector of variances derived from multi-auxiliary information. This
approach is particularly relevant when population variances for the
multi-auxiliary variables are not known prior to the survey. The paper
introduces a generalized variance and a vector of biases for the proposed
multivariate estimator. Special cases of the proposed multivariate variance
estimator are provided, accompanied by expressions for mean square errors.
Theoretical mathematical conditions are discussed to guide the preference for
the proposed estimator. Through the analysis of real-world application-based
data, the applicability and efficiency of the proposed multivariate variance
estimator are demonstrated, outperforming modified versions of multivariate
variance estimators. Additionally, a simulation study validates the superior
performance of the proposed estimator compared to its modified estimators.
Keywords:
Generalized variance; multivariate estimator; regression-cum-exponential
estimator; two-phase sampling; variance vector estimator
Abstrak
Untuk meningkatkan ketepatan dalam menganggar parameter populasi yang tidak diketahui, pemboleh ubah bantuan sering digunakan. Walau bagaimanapun, dalam senario yang mana maklumat yang diperlukan tentang pemboleh ubah bantuan sebahagian atau sepenuhnya tidak tersedia, pensampelan dua fasa biasanya digunakan. Cabaran untuk menganggar vektor varians menggunakan pemboleh ubah berbilang bantu adalah bidang yang kurang diterokai dalam kepustakaan semasa. Kertas ini menangani anggaran vektor varians populasi yang tidak diketahui untuk pelbagai pemboleh ubah kajian dengan menggunakan anggaran vektor varians yang diperoleh daripada maklumat berbilang bantu. Pendekatan ini amat relevan apabila varians populasi untuk pemboleh ubah berbilang bantu tidak diketahui sebelum tinjauan. Makalah ini memperkenalkan varians umum dan vektor bias untuk penganggar multivariat yang dicadangkan. Kes khas penganggar varians multivariat yang dicadangkan disediakan, disertakan dengan pengekspresan untuk ralat kuasa dua min. Keadaan matematik teori dibincangkan untuk membimbing keutamaan bagi penganggar yang dicadangkan. Melalui analisis data berasaskan aplikasi dunia sebenar, kebolehgunaan dan kecekapan penganggar varians multivariat yang dicadangkan ditunjukkan, mengatasi versi pengubahsuaian penganggar varians multivariat. Selain itu, kajian simulasi mengesahkan prestasi unggul penganggar yang dicadangkan berbanding penganggarnya yang diubah suai.
Kata kunci: Penganggar multivariat; penganggar regresi merangkap eksponen; penganggar vektor varians; pensampelan dua fasa; varians umum
REFERENCES
Abid, M., Sherwani, K.A.R., Tahir, M., Nazir, Z.H. & Riaz, M.
2020. An improved and robust class of variance estimator. Scientia Arania 28(6): 3589-3601.
Abu-Dayyeh,
W. & Ahmed, M. 2005. Ratio and regression estimators for the variance under
two-phase sampling. International Journal
of Statistical Sciences 4: 49-56.
Ahmad, Z., Hussain I.
& Hanif, M. 2016. Estimation of finite population
variance in successive sampling
using multi-auxiliary variables. Communication
in Statistics- Theory and Methods 45(3): 553-565.
Asghar, A., Sanaullah, A.
& Hanif, M. 2018. A multivariate regression-cum
exponential estimator for population variance vector in two phase sampling. Journal of King Saud University-Science 30: 223-228.
Asghar, A., Sanaullah, A., Abbasi, A.M. & Hanif, M.
2023. Advancing sampling techniques: Multivariate
ratio estimation for variance vector in two-phase
sampling. Bulletin
of Business and Economics 12(3): 473-484.
Breidt, F.J. & Fuller, W.A. 1993. Regression weighting for
multipurpose samplings. Sankhyā 55: 297-309.
Cebrián, A.A. & García, M.R. 1997.
Variance estimation using auxiliary information an almost unbiased multivariate
ratio estimator. Metrika 45: 171-178.
Cochran, W.G. 1977. Sampling Techniques. New York: John Wiley & Sons.
Das, A.K. & Tripathi, T.P. 1978. Use of auxiliary information in estimating the
finite population variance. Sankhya 40:
139-148.
Hussain, S., Song, L., Ahmad, S. & Riaz, M. 2018. On auxiliary information based improved EWMA
median control charts. Scientia Iranica 25(2): 954-982.
Isaki, C. 1983. Variance estimation using auxiliary
information. Journal of the American
Statistical Association 78: 117-123.
Lone, S.A., Subzar, M. & Sharma, A. 2021. Enhanced estimators of population variance with the use of
supplementary information in survey sampling. Mathematical Problems in Engineering 2021: 9931217.
Muneer, S., Khalila, A., Shabbirb, J. & Narjisb, G.
2018. A new improved ratio-product type exponential estimator of finite
population variance using auxiliary information. Journal of Statistical Computation and Simulation 88(16):
3179-3192.
Neyman, J. 1938. Contribution to the theory of
sampling human. Journal of the American
Statistical Association 33(201): 101-116.
Niaz, I., Sanaullah, A., Saleem, I. & Shabbir, J. 2022. An improved efficient class of estimators for
the population variance. Concurrency and
Computation: Practice and Experience 34(4): e6620.
Rao, J. 1973. On double
sampling for stratification and analytical surveys. Biometrika 60: 125-133.
Sanaullah, A., Hanif, M. & Asghar, A. 2016. Generalized exponential estimators for
population variance under two-phase sampling. International Journal Applied and Computational Mathematics 2:
75-84.
Sanaullah, A., Niaz, I., Shabbir, J. & Ehsan, I. 2020. A class of hybrid type estimators for
variance of a finite population in simple random sampling. Communications in Statistics - Simulation and
Computation 51(10): 5609-5619.
Shabbir, J. & Gupta, S. 2015. A note on generalized
exponential type estimator for population variance in survey sampling. Revista Colombiana de Estadística38(2): 385-397.
Shahzad, U., Ahmad, I., Almanjahie, I.M.,
Al-Noor, N.MH. & Hanif, M. 2021a. A novel family
of variance estimators based on L-moments and calibration approach under
stratified random sampling. Communications
in Statistics - Simulation and Computation 52(8): 3782-3795.
Shahzad, U., Ahmad, I., Almanjahie, I.M., Koyuncu, N. & Hanif, M.
2021b. Variance estimation based on L-moments and auxiliary information. Mathematical
Population Studies 29(1): 31-46.
Singh, H.P., Chandra, P.
& Singh, S. 2003. Variance estimation using multi-auxiliary information for
random non-response in survey sampling. Statistica 63(1): 23-40.
Srivastava, S.K. & Jhajj, H.S. 1980. Class of estimator using auxiliary information for estimating finite population
variance. Sankhya 42: 87-96.
Zaman, T. & Bulut, H. 2019. Modified regression estimators using robust
regression methods and covariance matrices in stratified random sampling. Communications in Statistics - Theory and
Methods 49(14): 3407-3420.
Zamanzade, E. & Al-Omari, A.I. 2016. New ranked set
sampling for estimating the population mean and variance. Hacettepe Journal of Mathematics and Statistic 45(6): 1891-1905.
*Corresponding author; email: chaamirsanaullah@yahoo.com
|